Binary Search :

Binary Search

0 | 2 3 4 5 6 i 8 9
wan [2]5 8 121623 [8 5672 o1

=0 1 2 M=4 5 6 7 8 H=9
Gedvar | 2|58 [12[16]23[38]56]72]091

4 L=5 6 M

0 1 2 3 Eh H=9
Gernar | 2|5 |8 |12 162338 (867291
8

W% [2]5 [[12]16 28] 3856]72] o1

Complexity : Time & Space

Calculating Time complexity:

o Let say the iteration in Binary Search terminates after k iterations. In
the above example, it terminates after 3 iterations, so here k =3
o At each iteration, the array is divided by half. So let's say the length

of array at any iteration is n

o At lteration 1,
Length of array = n

o At lteration 2,

Length of array = n-~2

o At lteration 3,

Length of array = (a-2)72 = n-22
o Therefore, after Iteration k,

Length of array = n-2k
o Also, we know that after

After k divisions, the length of array becomes 1

Therefore
Length of array = n-2k = 1
=> n = 2k

Applying log function on both sides:
=> log2z (n) = log2 (2k)
=> log2 (n) = k log2 (2)

As (loga (a) = 1)

Therefore,

=> k = log2 (n)
O

Hence, the time complexity of Binary Search is
log2 (n)

Nested-loop complexity :

for(i=0; i<n; i++)
{
for(j=0; j<n; j++)
{
for(k=0; k<n; k++)

{
}

}

i=0, j=0,1,2...n-1

|=1, j=0,1,2...n-1

i=n-1, j=0,1,...n-

n=>5, 5*5*5=125

Complexity : big_o(n”*2)

Big_o -> Growth Function

2x73 + x*2 + 3x

Complexity = max(power) = big_o(x*3)

Suppose , nested loop of i,j,k; complexity = 2 * big_o(n”*3)

Nested loop i,j ; complexity = big_o(n”*2)
loop of i ; complexity = 3 * big_o(n)

