
Binary Search : 

 

 

Complexity : Time & Space  

Calculating Time complexity: 

○ Let say the iteration in Binary Search terminates after k iterations. In 

the above example, it terminates after 3 iterations, so here k = 3 

○ At each iteration, the array is divided by half. So let’s say the length 

of array at any iteration is n 



○ At Iteration 1, 
Length of array = n 

○ At Iteration 2, 
Length of array = n⁄2 

○ At Iteration 3, 
Length of array = (n⁄2)⁄2 = n⁄22 

○ Therefore, after Iteration k, 
Length of array = n⁄2k 

○ Also, we know that after 

After k divisions, the length of array becomes 1 

Therefore 
Length of array = n⁄2k = 1 
=> n = 2k 

○  

Applying log function on both sides: 
=> log2 (n) = log2 (2k) 
=> log2 (n) = k log2 (2) 

○  

As (loga (a) = 1) 
Therefore, 
=> k = log2 (n) 

○  

Hence, the time complexity of Binary Search is 
log2 (n) 
 
 
Nested-loop complexity : 



for(i=0; i<n; i++) 
{ 

for(j=0; j<n; j++) 
{ 

for(k=0; k<n; k++) 
{ 
} 

} 
} 
 
i=0, j=0,1,2...n-1 
j=0; k=0,......n-1 
…. 
i=1, j=0,1,2...n-1 
…. 
i=n-1, j=0,1,....n-1 
 
n=5, 5*5*5=125 
 
Complexity : big_o(n^2) 
 
Big_o -> Growth Function 
 
2x^3 + x^2 + 3x 
 
Complexity = max(power) = big_o(x^3)  
 
Suppose , nested loop of i,j,k; complexity = 2 * big_o(n^3) 
 Nested loop i,j ; complexity = big_o(n^2) 
loop of i ; complexity = 3 * big_o(n) 
 


