
Binary Search :

Complexity : Time & Space

Calculating Time complexity:

○ Let say the iteration in Binary Search terminates after ​k​ iterations. In

the above example, it terminates after 3 iterations, so ​here k = 3

○ At each iteration, the array is divided by half. So let’s say the length

of array at any iteration is ​n

○ At ​Iteration 1​,
Length of array = ​n

○ At ​Iteration 2​,
Length of array = ​n​⁄​2

○ At ​Iteration 3​,
Length of array = ​(​n​⁄​2​)​⁄​2​ = ​n​⁄​22

○ Therefore, after ​Iteration k​,
Length of array = ​n​⁄​2k

○ Also, we know that after

After k divisions, the ​length of array becomes 1

Therefore
Length of array = ​n​⁄​2k​ = 1
=> ​n = 2​k

○

Applying log function on both sides:
=> ​log​2​ (n) = log​2​ (2​k​)
=> ​log​2​ (n) = k log​2​ (2)

○

As ​(log​a​ (a) = 1)
Therefore,
=> ​k = log​2​ (n)

○

Hence, the time complexity of Binary Search is
log​2​ (n)

Nested-loop complexity :

for(i=0; i<n; i++)
{

for(j=0; j<n; j++)
{

for(k=0; k<n; k++)
{
}

}
}

i=0, j=0,1,2...n-1
j=0; k=0,......n-1
….
i=1, j=0,1,2...n-1
….
i=n-1, j=0,1,....n-1

n=5, 5*5*5=125

Complexity : big_o(n^2)

Big_o -> Growth Function

2x^3 + x^2 + 3x

Complexity = max(power) = big_o(x^3)

Suppose , nested loop of i,j,k; complexity = 2 * big_o(n^3)
 Nested loop i,j ; complexity = big_o(n^2)
loop of i ; complexity = 3 * big_o(n)

